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FOREWORD

This study was initiated by the Biophysics Laboratary of the Aero-
space Medical Research Laboratories, Aerospace Medical Division, Wright-
Patterson Air Force Base, Ohio, with the support of the Biodynamics Section,
Environmental Physiology Branch, Life Systems Division, National Aeronauti-

i

cal and Space Administration, Manned Spacecraft Center, Houston, Texas. The

research was conducted by Frost Engineering Development Corporation, 3910
South Kalamath Street, Englewood, Colorado, under Contract No, AF33(657)-

9514, Mr, Peter R, Payne was the principal investigator. Mr. James Brinkley

of the Vibration and Impact Branch was the Contract Monitor for the Aero-
space Medical Research Laboratories, while Mr. Harris F. Scherer was the
NASA liaison representative,

The information presented in this report is a summary and extension
of the analytical solutions for the response of a dynamic system used to
represent the mechanical response characteristics of the human body, The
solutions described within this report were required to supplement a research
program concerned with the investigation of human body support and restraint
system dynamics.

The research presented in this report was initiated in April 1963 and
completed in June 1963,

This report is catalogued by Frost Engineering Development Corporation
as Technical Report 194-10 and is one of a series of reports generated in the
area of human restraint and support system dynamics.

This technical report has been reviewed and i{s approved.
J. W. HEIM, PhD

Techrical Director
Biophysics Laboratory
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ABSTRACT

The general theory is developed for the response of a single degree of
freedom dynamic system to an arbitrary acceleration forcing function. Closed-
form solutions are okbtained for a variety of discrete pulse shapes using the
method of Laplace transforms and the form of the solutions indicated for oscil-
latory inputs and semi-infinite ramps, in terms of complex Fourier series.

A comparison of base and mass excitation of the system is included. In pre-
viously published work on this subject, analytical solutions are in general
only given for undamped systems; an exception is the response to a sine-wave,
which appears in many standard texts. The dynamic analysis of the human
body usually considers models involving damping, so that in this area there is
a definite need for the extensions given.
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nax subscript indicating maximum value

n arbitrary integer

o) subscript, indicating initial condition

P complex quantity, occurring in definition of Laplace transform

[ arbitrary variable of integration

t time

T period of oscillatory acceleration input

v velecity

X arbitrary function, as used in definition of aﬁ(x‘)

Ym vertical ordinate of point mass

g‘ input acceleration, applied to base of system as function of
real time

gz input acceleration as function of non-dimensional time

Yc peak value of .3' -

Y: peak value of ‘J:.-‘.

S deflection of spring

S(t:) conventional symbol for Dirac delta function

A symbol indicating incremental quantity, as in AV
1) substitution for JI-_ET

e,6,,8, phase angles

A length of spring before application of input

S substitution for .‘;_zsi\_,__

T non-dimensional time parameter,T =uLYE

‘t’ value of U corresponding to maximum deflection of system
so phase angle

‘,')(;’13 phase angles

(g undamped natural frequency of a linear system, ¥ = '_E_
N frequency of oscillation of input
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Dots above symbol indicate differentiation with respect to real
time,

i.e., E‘c & Efé;-(g‘)

Primes after symbol indicate differentiation with respect to
non-dimensional time,

r Y
ie., g: - d%T(gJ



SECTION 1

INTRODUCTION

This report is concerned with the behavior of a spring/mass/damper
system of the type shown in Figure 1. This model has been used in the past
to simulate the dynamic response of parts of the human body, in efforts to
assess human tolerance to acceleration.

The response of this system to a continuous sinusoidal input is
frequently treated in engineering texts; however, the solution for other
types of input is usually confined to an undamped system. Mindlin, et
al (Ref, 1) have presented results showing the response to a half-cycle sine
pulse. ‘lthough an analytical solution was given for the zero-damping case,
the curves for non-zero damping were plotted from analsg computer results,

In Ref. 2 it is pointed out that in the absence of damping the
base excitation can be expressed in terms of displacement or velocity as
alternatives to acceleration, Although this is also possible when damping
exists, the resulting equations contain more than one input derivative and
are generally too complicated to be considered for engineering applications.,

We shall therefore confine our attention to the response of the
system when the base of the spring is accelerated, but it is shown that the
results are applicable, by a simple substitution, to the situation in which
the mass is excited while the spring/damper element is grounded.



SECTION 2

THE GENERAL THEORY OF A LINEAR GYSTEM

2Pyl Compariscn of Base and 'ass Excitations:

Consider the basic svstem (Fig, 1) with the excitation g°= g‘(t)
applied at the base., Then, if

ym = acceleration of the mass,
RS = force in the spring, (1)
2K & = force on the damper, MASS
we have [m)
(X ) ]
m =
J,- k6 +2Kd SPRING DAMPER
L. . (R) — IPYS
or Y = ur'é + 2ch (2)
since (9 = _h__
"
and C = —K—- Figure 1. Single Degree of
m Freedom System.
Let ‘A = length of spring when unloaded
and 8 = deflection of spring
so that § = AN - (gm"’g‘)
8 = - Sm + gc
6 = - SN\ + gg
Y.~ -5 +y, (3)
Substituting egq. (3) into eq. (2) and rearranging gives
.e e Y z
y = & + 2chb + Wb ()

Co..oider now the case in which the mass experiences a force excita-
tion P = P(t) , with the base of the svstem fixad.



Corresponding to eq. (2) we have, in general,

Y, = 2 4 w5 +2ch (s)

Since the base is fixed,

Ye
wi g - B -0

eq. (3) becomes

constant,

Y = —5
and substitution into eq. (S) leads to
-P . 8§ + 2ch +15'8 (6)
™

This indicates that solutions obtained for the base excitation con-
figmation can be applied to mass excitation problems simply by substituting

(=%/m ) for .gc

2.2 General Solution:

For a linear system, we have seen that

[ J 1 L X ]
S &+ 2¢6 + 08 = y_(¢) (1)
Using the transform T =&t , eq. (7) becomes

n

" +2cs + & = g:('t’) (8)

where the prime is used to indicate differentiation with respect to the non-
dimensional time parameter*C , and € = %

This equation is most conveniently solved for specific cases by the
use of the operational calculus. The Laplacian transform is defined by
oo
EL(x) =j e  x(t) dt (9)
(o]

using the symbol L (% ) to denote the transform of the function % (T ).

The existence of the transform must be verified when the function to be trans-
formed is not common enough to be tabulated. Three sufficiency conditions are
available; these, if satisfied, guarantee the existence of L ( %K ):



(a) %x(T) is at least piecewise continuous in any interval
T, ¢T&T, » where T >0

(b) ‘T"IK('L'), is bounded near € = 0 for some N 1.

NT
(c)e ,"-(’t')l is bounded for large values of U, for some
number N.

In Laplacian notation, eq. (8) becomes

L)L 7 + 22p +1] = L(y¥) +5,(p+22) +6),

where 50 = initial deflection at T = 0
and (8')°= initial velncity at T = 0,

We shall concern ourselves only with subecritical damping, where
€ € 1.0. Thus we can employ the substitution

q)’- - |-¢c* (11)
2 2 - =1 1
and write P +2Ep+l = P +2Cp +T + (1-T)

(p+ D+ v? (12)

so that eq. (1J) yields

L) = _Elu) b(P+22) (&)
) Py + 9t (A A (peF 47

Taking the inverse transformation and making use of the linearity
of the operator,

o) = | _FuD) |, s, | P +2e
(PrEY + D" (p+E) +

+(8'), ‘i-. ' (13)

(p+2) +m?
In the second term of eq. (13),
P+ T o (p+T) + ©
(p+ &) +M* (® +Z)"- + Nt (14)



- giving, aftec inversion,

-Ex T
5, e {czs YT + ¥ S\ﬂ’*)“-‘}
= %g e-CTw(v)fc+<p) (15)
where (P = arcsin 'Y) (16)

For the initial velocity term,

] (8, -Tt
(Sl)off. \ (pe)* |+ Mt ] = € snmMT

(17)

Thus the solution to eg. (13) may be written as

-1 " -c< .
S =& Z( ye') + & & sinMT +(8‘)° Sm('\r)'l' +<f) (18)
=\"3 1
(P+)" +7 ¥
When the motion due to an initial condition only is required, this
can be obtained immediately from eq. (18). Moreover, for any forcing func-
tion, *he initial condition transients are directly additive to the response

due to the forcing function. Thus we need only conasider the variation in eq.
(18) due to the particular forcing function g‘(t) in what follows.,

We shall see in Section 3 that any acceleratlon input pulse or vi-
bration has a characteristic peak value Y" (ma![ ])
w

It is convenient to express § in terms of Yc ,» SO that eq. (18) becomes

_S__ =&" &(g;‘\ 7 + initial conditions solution. (19)
Y (p+E)* + M*
Initial conditions solution:
-c"'
.5_” [ &, sin HT +(8'), sm('v)‘t + ‘p>]
Ye ")

Consider the steady-state part of the solution given in eq. (19):

_ Llue) 'l g"[ Ly ] (20)
- (P+a*+m* ] ¥ (p+E) +m?
The Laplace transform of eq. (20) is simply

\i(&) = L(ye')
(p+e)t+M (21)

.:<,|v~




so that

) = (8 (22)
(P+Ey +m? Ly

?‘(5) may be regarded as the transform of the "output" of the sys-
tem, with 1{(3:) the transform of the "input'; thus, subject to quiescent
initial conditions, we may define

q("’) - | _ ﬁ(5> _ R(») (23)
=\2 L = N
(P+E)*+m) ) (P
- as the system transfer function for the input g: » with the in-
put applied to the base of the system as shown in tig, 1., It should be noted

that definition (23) is onlyv unique when the point of application of the in-
put is specified.

The transfer function of the system is the Laplace transform of its
rheonomic normal response (i.e., its response as an explicit function of
time, for quiescent initial conditions) to a first order unit impulse.

From eq. (23), it follows that

R = 6@ F(P) (24)
Let £:(8) = L'LR(P)]
I [a(p R(P]

(25)

Now the inverse transform of the product of two transforms can be
obtained by means of the convolution theorem:

L aPRM] = [Tale-95(9 as

(26)

J:c g9(s) §,(T-s)ds

Zlg(v)]
R(P)

()
Rip = L(y) =L(&)
RiP= (8 =)

and § is an arbitrary "dummy" variable of integration.

where

G(P)



Thus, when an acceleration input function 9‘" igs given, the re-
sponse of a linear system to Yl may be found by integration of one of equa-
tions (26), making use of the known response of the system to a unit impulse.
Although the technique is based on the Laplace transform approach, it is not
necessary to use the transform of the input acceleration function. Th. 1eth-
od is probably more useful than the direct inverse transformation pr« :dure
for cases where the transformation i(gg“) is not a rational function of ¢ , >
that the ratio &(gg“)/(pq.z)‘-wo cannot be expanded into simple partial
fractions. In many cases, however, the integrand is so complicated that the
integration becomes very laborious to perform dnalytically, and numerical
methods are preferable.

The approach just discussed, involving the convolution integral,
may be developed even further for the special case of a steady-state oscil-
latory input. The input may then be expressed as a complex Fourier series:

[ T
Y. = 5(v = icnemn (27)
Ne- 00

Where Cy is the nth complex coefficient in the series, and /A is the frequency
of oscillation of the input. C€p is given by

V. -inaT
Cn =_t S(x)e dt  (28)
2“ -%
)8

The complex exponential form of the Fourier series thus needs only
one formula for all its coefficients, and is more compact and easier to ma-
nipulate than the more comnmon trigonometrical form. It also provides a con-
venient transition to Fourier integrals and Fourier transforms.

Re-writing eq. (27) for J‘-'(‘T-s) and substituting into the second of
equations (26) leads to

At
since C,€ is independent of &

For convenience, let

‘Lg(s)e-.mns ds = A(n) (31)

where A(n) is thus the Fourier transform of the impulsive response function
g(t). Since g(t) is zero for T<O , the limits of integration can be 0,00
or +oo without affecting the value of the integral.



Hence we can write (30) more succinctly as

o° AT
® = Z A(“)Cne (32)

ne-00

For an input which is real, the output must also be real; under
these conditions eq. (32) becomes

§ = C AD + 2% [cn Al cos(nat + )| ()

Nnel

where Q“ is a phase angle, defined by
/s,

__]‘,, %,(T) sin naT dt
-/

P e

ton €,

Since any periodic function can be expressed as a Fourier series to
a high degree of accuracy, the response of a single degree of freedon system
to any periodic function can be calculated from eq. (33), Fourier series
representations of some periodic functions are given in Table 2 of Section 3,

It should be noted that the Fourier series expansion of a periodic
function which has finite discontinuities leads to finite (though not usually
significant) amplitude overshoots in the region of the discontinuities. For
example, for a rectangular wave, the Fourier series expansion gives amplitude
overshoots at the discontinuities which approach a limit of about + 9% of the
amplitude of the wave as the number of terms in the expansion tends to in-
finity (see Fig. 2). At points on the rectangular wave between the disconti-
nuities the difference is much less, of course, decreasing as the number of
terms taken in the expansion is increased. This behavior is due to the fact
that the Fourier series expansior fails to converge uniformly at the discon-
tinuities; this is known as the Gibbs phenomenon., It is discussed in detail
in Ref. 3.

Input functions which are nonperiodic (e.g., acceleration pulses)
may also be treated by a modification of the Fourier series expansion, in the
form of Fourier integrals and Fourier transforms. Generally speaking, how-
ever, the method of Laplace transforms usually proves to be more convenient
to use for such functions.

Further discussion of the Fourier methods is beyond the scope of
this report. A more detailed treatment will be found in, for example,
Ref., 3.
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SECTION 3

DISCUSSION OF ACCELERATION INPUTS

Most idealized acceleration inputs fall into one of three classes:
(i) discrete pulses
(ii) oscillatory wave-forms

and (iii) semi-infinite ramps,

In this paper, the first class has been investigated in greatest
detail; using the Laplace transform technique, the response of the basic sys-
tem to several different types of pulse has been analyzed. For each pulse,

a family of curves is presented, showing the variation of amplification fac-
tor with pulse duration, for a range of values of the damping coefficient
ratio. These are plotted in Figures 4 through 8, Amplification factor is
defined here as the ratio of maximum dynamic deflection to static deflection.
The pulses considered, together with their Laplace transforms, are summarized
in Table 1 of this section; the detailed solutions will be found in the
Appendices.

Oscillatory inputs may alsc be solved using Laplace transforms;
however, a more convenient approach in general is by way of the Fourier se-
ries expansion of the input function., This method is discussed in detail in
Section 2 of this paper. The Fourier series representations of some periodic
functions are presented in Table 2.

Semi-infinite ramps represent acceleration inputs which start from
an initial value of zero, and rise in some fashion to a constant acceleration
level, Rise-time is the most important parameter for this type c¢f input,
Table 3 shows some of the ramps commonly encountered, together with their
Laplace transforms.

11



TABLE 1: DISCRETE PULSES.

TYPE FUNCTION L - TRANSFORM |

DIRAC IMPULSE

N ) b

Ye

RECTANGULAR PULSE
HZ ..... " " [ :

4—-| Ye Y. = Yc' (°<rt< a) g(gé‘):ﬁ(l_e-api

- =0 (T>a) i

HALF-SINE PULSE

]
N PR I
T<K -
(e<T<3) = "—‘-."n'; I+e_f)
% T =0 (T)i) PN

VERSED-SINE PULSE

y! ) s(y.) =
ettt A y"=Y' 0 s —ap
(- BT |y (- )
et | L, lozmee | 2P6H(ET)

a

TRIANGULAR PULSE | ,

ye Y, Y = _:%"fr (o<'t<a) ;5‘('9:'.') iap 2
: o 3}{'(201-'1:) (a«d*a;%(\—e )

12
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TABLE 3: SEMI-INFINITE RAMPS,

TYPE FUNCTION L - TRANSFORM
VERTICAL FRONT
o BC. = Yc (t>0) &(Sc) =£
A s
- t
LINEAR FRONT
y ‘ *e .o
* x Yo=Y t (octety| (i) =
/—-Yc bR
I [ ) ¥ - t
i = E>t _YL |—-e P
éR >t Yz ( > R) taPt( )
VERSED-SINE FRONT
gc 4 = Yy =.Y.c(|-c.os‘rrt:) EE(EJC) =
Y <7 te o gy b
/:r (o<E<te) Y_,_[:,J (1+e )
.o ? 1 [ 2
! -t =Y.  (E>tR) Pp +[tg] )
bR
EXPONENTIAL FRONT
i, }
"""" el () [4(5)= e
/ (b S p(p+a)
> L
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APPENDIX I

DIRAC IMPULSE FUNCTION

From Section 3, the equation for the Dirac impulse function is
simply

Yy, = bv s (35)
with the Laplace transform

FL(y) = av £

In (19), (replacing Y‘. by &)

0's -‘i-‘r | (37)
u AV l.(frbibt 4-”)1

LWt éj sin MT (38)
W Av )

Equation (38) is plotted in Figure 3 for several val..s of € . It
is interesting to note that in the initial phases of the motion it is ade-
quately described by a system consisting of a mass and damper:

) = (1= %) (39

As the deflection increases, the spring force becomes important
enough to cause a divergence from the simple damper result, and returns the
system to equilibrium, after passing through a maximum deflection.

We determine the maximum deflection by differentiating eq. (38)
with respect to T , then equating to zero,

&t 1
ie. @ b = €& cosMT — € e smYT = O
~ "
dt [ wAv "
P\ — E_-hn'r)‘f': o (40)

4
Solving for <T®  the time at which maximum deflection occurs, gives

-c ) ¥,

T = %l_m_p__ = arsny ¢

%* s
(liote that T —*» | as C—el|

& 1)

T —+z 4, C—>0,

17



Substituting for t®in eq. (38), 29

1 ) : .o}
'8nay _ €7 sin " G"‘-"“"))
Ly AV " \ W)
-
- e % (41)
8
Note that LS max > J o8 T |
W Av €
= 3
T and Y Omex are plotted in Fig. 4,
w Av
When the initial deflection is not zero, eq. (38) may be written
96 g’ X c L]
e e { cos ‘\'.'4—[5; +_]$m "L'Z (42)

2
using the substitution ‘§= w—6° for brevity,
L av

where &, = initial spring deflection.

This can be simplified to

-cT

L e Yer.023f+1 sn(mr+e
o = o 3 L dn(nTeo)
(43)
where 8 = arcsin - ‘3.0
JE€* +2% +1
Differentiating with respect to U ,
d wzﬁ} - J'S"-&-'ZE!-H ' q)e’z.‘cgs('\)‘twe)
AT | AV 4/,
-€T
—cCe S‘n(’v)‘t +6) }
~ST )
e JE+2z e+ Sm(")'f*'e*‘l’) (u4)

where sin ¢ =‘Y) as before.

18



Equating to zero, this simplifies to

N)"t* + & 4+ ) = NN (45)

Sin('n‘t"‘ + ©) sm (nw— ¢)
M (46)

Also cc _ nwt -0 -¢ (47)
M

Substituting eq. (46) and (47) into eq. (43) gives

o -£(¢-©
L 6r'nm( -~ e ",( \)g'l +2C8 + |
Lo AV
where sin 8 = £ (o€e<E) )us)
' 3E* +2z8 41
sm @ =M (Beps T

The response of an undamped system to an impulsive velocity change,
for various values of the initial parameter , is given in Figure 5,

19
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Freedom System to an Impulsive Velocity Change.
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APPENDIX II

RECTANGULAR PULSE

From Section 3,

gz = Yg‘ (C)$‘t < O)
« O (T>a) (49)
n -ap
ﬁ(gél) =:‘/:<(-—€ ) (50)
In eq. (19),
& N e " (51)
Y, ! 1:('»p1+'26p+b

n

b + %-.‘:.1 s'm('r)'r — arckan _‘2)

-g(t-9)
_i |+ ire)_ sm(nr)[fr—-a]— arcbon-_g_)} H(‘T-CQ

where H(‘l‘-a) denotes the Heaviside unit function:

H(T-&) =0, <<a
=1, TCTya
-zt |
'. __8_ =\l 4+ e Sm(ﬂ)'t—O»\‘Ck'Qn 2_) Jor T<a (52)
% " X3
and -eT
£ _ 1 {e " sin(9T—ondun B
’Q” q, -c
~-c(T-a) , )
—-e S\ﬂ('t‘)[’f—o.:]—afct'on.-_) for T>a (53)
-C
Differentiating, S
-C
a4 (8\_ & . -Ze S’m(")¢- arckon 9
d't yc“ - YC-“ th 'C
+e ocs('r)'t — arcton 9
~-C
—cx
- e sn 7T - (T<a)  GW

m

23



and for the second time-regime,

-E't _z T-a

yf: e‘r) sn 9T — e") sin M (T-a) (tT>a) s)

. » . . .
We can find T ', the time at which 6,,,“ occurs by setting eq. (55)
equal to zero, ana solving for time, The value of 8max is then found by sub-
stitu ingC =T® into the equations for 8.

/
(i) For T<a , setting S/y‘u = 0 gives

Sin ‘\j'l.'*= 0
'Y)‘T‘ =nT
. nw
- nw ") >
In (53), Smay = | + €7 sEn(mt ~ arcton 2
v ) E
and for N = 1, we have
-CT
Omax = | + e (T<a) (57)

Y g
(Note that for zero damping, we get the familiar result %’ = 2, indicating
100% overshoot of the system,)

(ii) For T>a | eq. (55) leads to

e‘cr.{ sm «)'l‘* - eaa sin 19(1‘*-— a)} =0

and, ignoring the trivial result of 'T.'.=00, we get
. o ca( | #* ® .
sn T = e {smﬁp't c.o-s'\)a.—-cn:sw)‘t sm'r)o.}

Dividing through by 8mn 'Y)'t"

cd ® .
| = e cos Ha - oot'v)'t‘ S\n'v)a.i
-ca
SestytT = cosma — @
* w 1
whence a = | arcktaon sin T (58)
) ws o —e &



-ec* - .
6\/:3,‘ = € sm('t)‘t — arckon -'_E')
— e sm(rv)["t - a.] — arctan ___E__.) (59)

(t>a)

The response of a damped single degree ot freedom system to a rec-
tangular-pulse acceleration input is plotted in Fipgure 6, as wW*8max A
versus the non-dimensional pulse duration, u9a <

Usi{ug Figure 4, it is possible to calculate the initial slope of
the plot of © 8max vs. ¥a fo any arbitrary pulse, providing a useful check

Y,
on the solutior:; this check was applied to the case of the rectangular pulse.
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APPENDIX III

HALF-SINE PULSE

The equation of the pulse, from Section 3, is

9: = VYe sin aT (osT<3)
©
= O (t>R) (60)
with the Laplace transform
-p
" all+e *) (61)
\!i:(sﬂcn) = \é'-_- qpi + n?

Substituting eq. (61) into eq. (19) gives

-pPX
r
® ! all+e ) (62)
A (§ + 2P+ 22p+))
In terms of tnre Heaviside unit function,
5 n A s'm(_n_‘t - 'Y")
\&F J??_Jc_m‘sz!n} L
-¢cT
e ) = v ~-Xl. H{T-X
+ 5 Sm('r)'t' 1) +.—ul_ sm(.n.[ .n_] 1;) ( .n.)
—e(t-3) . -
+ e A)Sn('r)[’t—%]—')ﬁ) H(‘ _-r—L) (63)
Q)
The phase angles are c
’ . ¥, = orctan <2 | -t (0<’¥f.$ Tf)

2z
¥, =arctan = 5| Log (¥ ¢2m) W

We must consider separate solutions for the two time regimes

M T< =, @ T>E



(1) T< Va

Because of the Heaviside unit function, eq. (63) becomes

-ct
& . n {l sm(AT~-Y) 4 € sm(«r)'t 'f') (5)
Y Ji-aysdem In "

Note that for €

0, this simplifies to

5 . ' {S'In AT —nsnmT (66)
Y‘-ﬂ '_.‘L'I.

since 1#-—»0 and 1-—-»1( as € —s» 0. This agrees with the zero-damping solu-
tion for“t('?&;establlshed in, for example, Ref, 4., Differentiating (66),

6! n -€T .,
2 = aT-%) + e sm(mTt—Y + Y
' Y- +4z‘n.‘{ ss(et ) KB (o= =% %) %

here 'V, _omtun(a) =osn Y  (Tash<T) (g

, the time at which & achieves its maximum value, is the solu-
tion of the equatlon obtained by setting (67) to zero:

-z *
n Tiy)+ e in(HT -V, +% )= O (69
R

L
An explicit solution of eq. (68) in T , if it exists, is certainly
not simple to find, except for the case of € = 0, when eq. (68) becomes

» »
s AT —wsT = O

th » #*
so that .ﬂ.‘c - T
*
NT = in =T
»
whence, forn = 1, T = Qv (69)
x|
.

SinceC is necessarily positive, and fL may be less than unity, we must take
the positive sign in the denominator of eq. (69).

.
For non-zero values of € , ‘U is found most directly by a numeri-
cal-graphical approach.

(ii) T > Wi

For this case, since (T—“/.n.) > 0, the value of the Heaviside
unit function is unity, and eq. (68) becomes

od° ]



% sin (MT-%)
A (o~ 5]-%)
+§_€-" 5‘“(")["’3‘{]"1':.)} (70)
Noting that %(n['r-}"[]-'ﬂ;) = swm(AT-V -7

= --s'm(,n,'t —')L,) ~

we may simplify eq. (70) to

5 _ n e-ﬂ{ sin(M)T—%)
L ‘E-:\})‘HZ"J{-U m . eEn/A s'm("l)'t"'ﬁ"')ﬁ)§ (71)

Differentiating eq. (71) with respect toT gives

& ___ = e‘z“{-z sin(1)T - %)
o Ji-s>eazs

-< eE'/A Sin (’r)‘t ~¥,=M '“'/_n_) +) cgs('v)'t —¥;>

+‘\)€zv'“' s'm(")'f-'\b,_—'v)ﬂ/_n) } (72)
o peX T deX = T dfranind
= sin(X +"‘:|)

by the definition of Yv‘ in eq. (67).

. (72) becomes N
& _ o e u{sin(")"-‘ -V, +%)
Yo Ji-sr 448 )

s sin(") T—'*z‘*')‘s"ow/l\)}

(73)

29



Equating to zero, we have the equation for "t':

<n,

5 n .,

sn(NT* % +%;) + e sm('\')'t""--‘ﬂ-,L +H—YVa) =0, v
27*

ignoring the trivial solution of € = 0.

We can again make the useful check of inspecting the zero damping
case: for € = 0, eq. (71) bec-mes

s ' _ ; _ W
= \;ﬂ-al {sm('c ™ + sn(T-w- /,n)}

— L { —sn T - sin(‘l'-w/_n,)} (75)

|l— n*

The solution for this case given in Ref, 4 may easily be rearranged to give
eq. (75).

Setting € = 0 in eq. (73) gives
. # 11‘/ . Y 1r/ _'rr/
sln(‘t —T + 2.)-\- snn('l‘ -T + 72 n

or c.os‘T* + COS(T* —“/.n.\)

1)
(o)

#*

T (T* —“/JL\)

+

nxw

»

2T Va

)

}

Nt
Finally, forwn =1,

» T L
T= 7= vt 73

|
2 (76)

Substituting for"t. into eq. (72) leads to
A |-t 2a 2n
= 20 cos W (77)
|-n? 2n

which agrees with tie solution for s%" given in Ref. U4,

]
We need to solve eq. (74) explicitly for ‘T .



For brevity, write A = ‘}'2_"'"3

(78)
so that eq. (74) becomes
: S
sn (MT*-A) + e sn(nT*-B) =0
. #x *
sn YT cos A — CﬁS'DT sn A
= 0

+ e&/“{s‘m MT*cas B = s 'v)fc*shs}

S%n

Sin «)T*{oos A+ e c,cs’B}

= C,OS'T)T*{ sn A+e Sm'B}

<x,
tan ")T* - snA +e "snB
cos A 4+ efw/-“- B
<
whence T %x = | mtnn{ sin A+e o N R }
v cos B + eV o B

or, substituting for A and B,

" %4 .
T =_! oncbon sn(%-¥)+e sn(%-% +9Wn) (79)
. T
K ws(Bh-P)+e “‘(’Vz""‘;“’?“/n)
Maximum deflection may now be derived by substituting for <t =T*in eq. (71).

The response of the system to a half-cycle sine pulse is plotted in Fig, 7,
for a range of values of damping coefficient.
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APPENDIX IV

VERSED-SINE PULSE

From Section 3,

do= Ye[1 — oos 2n1]
2 a
(0¢Tga) (80)
= O ( T>a)
nw o _ cy ¢ _ =P
2w) =% [+ - ;?iﬁ%)"](' T

Using eq. (19), and writing’h'/a as D, for convenience,

5
Y‘_”

where

and

_‘_&"{ - e F p(1-< ) } (82)
G 'P['P" +2Cp +| ] [?1+3‘][?1+ 2Zp +I]
SW - Sz
\eu \Q" say
RN _J_aE"{ 1-e }
V! R PP +2ep + |)
| e " - |
-2 {'% : [W)T “P,] M
-Zlt-a)
—‘?{l + gN) S\n(")[‘t'-c..]—"l:) H('r-o.)} (83)
S _ l_:,e"{ p(1—e”**) }
A 2 (P"'* 'D"')(?q' +2%p +1)
=1 o {m(lb‘l‘—')",)
R Jouytra

~c{t-a]

+ & snlnT-%)- as(b[‘t-a]-k)“@-a)-gq)_ sin(v)ﬁt-a]-\g)n(*rm)

(8u4)
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The phase angles are

¥, = orctan (-lz)

'V‘ = afct'ah( 2‘6 D) (85)
Dt - |
'Y’s = —'Y/| - Of‘ct'o.n( Q'Y)E )
Pt + 2T -\

The complete general solution of Eq. (82) is thus

> 1 feos { ( -v) ; sin(nT-%,)

J(b" ,)‘.,_A:r *
= ous('.b[fc-a] —')l;.) H(“t - o.)

= e;’)-‘[“"“" s,'m(ng[ft— a]—'g)ﬂ(‘t-a)} (86)

de now separate the general equation into the twc time regimes,T<a and T>a

»HT<a
H(T-a) =0
so that eq. (86) reduces to
5 :gffﬁn T-Y) +_L
w 0T
- _ o { DT-% +e“"sm,«r.¢}
By e ( ) ( ")

(87)
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Differentiating,

8 L <E snfyep) - eos(ne W)
Y o2 1"
— T4 {-]) s'm(’.DT -'Y:L)
J(b"- V+ 42D

. e-zt[_% sn(mT-%) + cos('r)T—Yé)]}

-ct
- € 6in ':)‘C

()
"b‘/'Z nlDT-Y &% wm{NT-¥+¥
+J(b‘-')‘+4a‘s*'{w b t)J'%)— “(v : ')

(88)
¥ i 5=6
= O when T =T and & = dyay
A graphical method of solution was used to solve for T® , and Smex found by
substitutingT=T® into eq. (87).
(HT >
For this case, H(T-&) = 1, and eq. (86) becomes

5 _ sin(nT-¥)- e S‘“(")[““]"‘.)

——

Yc" 2.9
- ‘D:/’LA '{e-z't s'm('v)'t'-')l;)
) LI rb
B
re ™ anfofe-o]-4)]
(89)

Differentiating %" with respect to T and simplifying the result gives the
following result:
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-CcT

_ e J)snmT — D* sm(mT -, +¥, i
' 2 { . Jo- )\ +aery ( ’ )
-c[t-a]( . 2 : —al-¥s
- ‘e}.") {5‘“ o el +]m‘—j|;‘+4£‘n‘ sm('\)['t' I )‘}

. . ®
Equating to zero, and solving for T =T gives

"[* = ' _arctan) - ( J, Sn @, = J, sin e,_) (90)
3.' cos O, -— T-,_ cos 0,
where
z L ]
3-‘ = | - > = Sz (’w' ‘y‘z)
JT‘D"_ I)‘-O- 4c*p*
1 R}
J(.Dz_ l)‘+4€“.b"
(91)
1 .
9, = qarctan D - _S.n('yi = ’)(é)
1 3(‘1:"‘— N+ 4t
€, = arctan ! s, - %)
3 “('b"_\)"'+4€"3"'

Em
:X is found by substituting equations (90) and (91) into
Ye eq. (89).

The response of the system to a versed-sine pulse is plotted in Figure 8.
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